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Abstract
In this work, we examine the impact of GitHub Copilot on Test-First Development (TFD), a common software
development paradigm in which tests are written before implementation. In this way, developers are required
to express problem requirements via tests, which then inform the implementation. We conducted a between-
subjects (no Copilot vs Copilot) pilot study with four participants, which consisted of coding tasks and pre-
and post-task surveys. In each coding task, participants iterated between writing a comprehensive API and
writing a test suite for the given problem, with or without Copilot. We discovered that while Copilot greatly
enhanced productivity, it resulted in superficial understanding of the problem requirements and decreased
scope of the test suites. Developers should therefore be cautioned that when using Copilot for TFD, though
they may gain initial increased productivity, Copilot ultimately leads to decreased problem comprehension and
limits the coverage of their tests.
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1 Introduction
First introduced in the Extreme Programming community, Test-Driven Development (TDD) is a
workflow in which developers iterate between writing tests and implementing features in order to pass
those tests. The original definition of TDD by Kent Beck requires practitioners to repeat the following
steps [1]:
1. For a new feature, write only enough test code to fail.
2. Write only enough implementation code to pass the test.
3. Refactor the codebase while ensuring that all tests pass.
Case studies, controlled experiments, focus groups, interviews, and surveys have assessed the value
of TDD over the past 20 years [2]. Nearly all high-rigor and high-relevance studies on TDD in
industry settings have found that TDD improves external quality in the form of defect density in
delivered software, reduces complexity, and is well-perceived by practitioners, but can potentially
reduce productivity, which means it might increase development time [2]. However, TDD is not
necessarily appropriate in every scenario. GUI development, for example, is a well-known application
domain for which TDD is especially challenging [3]. Thus, more long-term case studies are still needed
to further validate TDD for industry adoption and identify situations where TDD may be detrimental
to software engineering objectives.

One of the reasons behind the inconclusiveness of past work on TDD is variance in ramp-up time
[4]. Anecdotal and empirical evidence have shown that since TDD has a nontrivial learning curve, its
benefits only manifest themselves after some initial investment and ramp-up time [4]. In this study,
our subjects consist of students at UC San Diego, who are mostly novice programmers with little
professional experience using TDD. Since we don’t have the resources to give our subjects sufficient
time to develop proficiency against probable reluctance to TDD [5], we opt to relax its constraints and
study Test-First Development (TFD) instead, which only requires each feature’s tests to be written
before its implementation. Along with writing tests, we also investigate API design.

Recently, Generative AI tools have been applied to software development, with the advent of
OpenAI Codex [6] and GitHub Copilot. These tools have promise to facilitate and automate tedious
and predictable tasks. Given that TFD has been associated with reduced productivity, Generative
AI can potentially mitigate the downsides of adopting TFD while retaining its benefits to external
quality and complexity. To assess this potential, our study addresses how the use of GitHub Copilot
in the API design and test writing phases of TFD would affect productivity and code quality. Our
work complements recent efforts to evaluate Generative AI’s ability to write implementation code in
a TDD workflow [7].
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In this paper, we report a controlled, between-subjects pilot study where four participants are
asked to iterate between writing a comprehensive API and test suite for high-level programming tasks,
either with or without GitHub Copilot. We perform thematic analysis on the results, record the time
each participant took to complete each task, and analyze their resulting APIs and test suites. We
find that although Copilot significantly reduced the time subjects took to write APIs and test suites
according to our description, it actually hindered their understanding of the problem requirements.
In conclusion, we warn that while Generative AI tools may be ideal for speeding up implementation
of specifications [7], they ultimately serve as a crutch for developers in producing initial tests for a
problem, resulting in a more surface-level understanding of the problem.

2 Method
We conducted a 1-hour pilot study with 4 participants. Each participant first completed a pre-task
survey indicating their background with relevant topics (see Table 1 for details).

ID JavaScript Experience Jest Experience Copilot Experience
P1 2 1 10
P2 2 1 3
P3 10 8 10
P4 10 9 7

Table 1. Participants’ overview from pre-task survey. All experience metrics are self-reported ratings from 1
(least) to 10 (most).

Then, participants were given one or two tasks to complete, depending on what they were able to
finish in the allotted 1-hour time frame. We designed three tasks that we randomly assigned to each
participant (see Table 2 and Section 2.1 for details).

For each task, participants were given a high-level description for a JavaScript class. They were
then tasked with writing a comprehensive API for the class using natural language in order to sum-
marize their initial understanding of the problem. Then, they were asked to write psuedocode for a
comprehensive Jest test suite for the class. We opted to have participants write pseudocode in order
to minimize the confounding factor of uneven prior knowledge of JavaScript and Jest among partici-
pants (as shown in Table 1), particularly as our initial experimental results showed that participants
with less JavaScript experience were unable to complete a single task if required to write executable
JavaScript code.

Our study followed a between-subjects design, where participants were assigned to either have
access to Copilot (P3, P4) or not have access to Copilot (P1, P2) when writing the tests. Neither
group used Copilot to write the API. Finally, they were asked to iterate between modifying the API
and the test suite. We particularly focused on participants’ subsequent modifications to the English
description of the task (i.e. the natural language API) after writing the test suite with or without
Copilot. We observed the impact of Copilot on Test-First Development by examining both how
writing the test suite impacts their understanding of the problem requirements via the API, and how
comprehensive their test suites are, with or without using Copilot.

Finally, each participant was given a post-task survey to complete, which queried the perceived
impact of writing the tests on their understanding of the problem requirements, and, in the Copilot
group, the impact of using Copilot to write the test suite on their comprehension of the problem (see
Section 3.3 for more details).

2.1 Task-Specific Prompts
2.1.1 API

The user prompt given for the API portion of each task is as follows:
T1. Please write an API for a class named TodoList that manages a to-do list ordered by due date.

You should be able to add/remove items from the list, and modify existing items.
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T2. Please write an API for a class named PrefixCalculator that implements a prefix calculator capable
of performing basic arithmetic operations (+, −, ×, and integer division /). The calculator uses
a stack-based approach to evaluate the prefix expression. For instance, * 4 5 evaluates to 20.

T3. Please write an API for a class named URLShortener that implements the conceptual interface of
a URL shortener website like is.gd. Users should be able to shorten new links, look up shortened
links, list the shortened links they’ve made, check the number of visits to each shortened link, etc.

The API prompt for each task concludes with: “The API can be written in plain text. It should include
a list of public method headers, their arguments, and a short description of what each method does.”

Each participant was randomly assigned one or two of the tasks in Table 2:

ID Task ID Assignment
P1 (no Copilot) T1
P2 (no Copilot) T3
P3 (Copilot) T1, T2
P4 (Copilot) T2, T3

Table 2. Randomized task assignment to each participant. Participants in the no Copilot group were initially
assigned two tasks, but were only able to complete one, so we omit the tasks they did not do.

2.1.2 Test Suite
The user prompt given for the test suite portion of each task is: ”Please write psuedocode for the
[task_name] test suite (do not run the tests). Please make your tests as comprehensive as possible.”
task_name is defined as follows:

T1. task_name = ToDo List
T2. task_name = Calculator
T3. task_name = URL Shortener

In addition, basic starter code is given for each test suite, as well as a fake Jest test suite for syntax
reference. Please refer to our GitHub repository1 for details.

3 Results
3.1 Thematic Analysis of Participant Transcripts

Theme 1: Test-Driven Refinement of Problem Requirements Across Both Groups. All partic-
ipants refined their understanding of problem requirements in some way as they wrote their test suites.
For example, P2 (no Copilot) identified the need to add output statuses to the DeleteLink function in
their API for T3 (URL Shortener) as they iteratively modified their tests and API to comprehensively
encapsulate the problem requirements. Similarly, P1 (no Copilot), while revisiting their API after
completing the test suite in T1 (ToDo List), realized they had overlooked a critical feature. When P1
was prompted to consider additional inputs or outputs for their tests, they added a method to retrieve
all items in the ToDo list. Participants in the Copilot group also demonstrated refinement of their
problem comprehension after writing their test suites. For instance, P4 (Copilot) added a parameter
to their API in T3, modifying their URL lookup function after recognizing the need for a variant of
the function that does not increment the lookup count. P4 articulated that this addition emerged
primarily from their own reasoning, not from Copilot.

Theme 2: Functional vs Semantic API Changes Between Groups. We found that although all
participants refined their understanding of the problem requirements via the test suite (i.e. Theme 1),
after completing their test suite, those in the No Copilot group made additional functional changes
to the API (i.e., altered its core functionality or added new features), while those in the Copilot group
made minor semantic changes to the existing API (i.e., refined or adjusted the behavior of already
existing functionality in the API). For instance, when prompted to revisit their API after completing

1 https://github.com/broad-well/tdd-copilot-study
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the test suite for T1, when P1 (no Copilot) was prompted to think more critically about specific inputs
or outputs they might want to verify, they realized ”Oh wait, I did remember one thing that I forgot
to add in the API”, and subsequently added a new method description (i.e. additional functionality)
to the API (showItems, i.e. get all items from the ToDo list) that their tests made them realize was
missing. P1 also modified two other functions to throw exceptions (checkNextItem, removeItem)
when the item did not exist in the list. In T3, P2 (no Copilot) made functional changes to their API
when they realized ”I should actually probably have these like output statuses [in the DeleteLink
and ShortenLink functions]” as they wrote their tests. After completing their test suite, P2 then
updated these functions in their API to have ”success” or ”failure” status output, and further refined
their definition of ListShortenedLinks. After doing so, P2 further articulated ”I feel like I messed
up one of the tests” and returned to their tests to update their shortenLink test to reflect their
modified API.

In contract, in the Copilot group, after writing the test suite for T3, P4 only made a very minor
semantic change to their API after writing the test suite. They simply made their Error message more
explicit and detailed by enumerating the possible Error types, and then updated the return signature
of their evaluate function to reflect this (they did not, however, change the scope or functionality
of the problem requirements). After completing the first iteration of both the API and test suite, P4
then articulated ”I guess I made some changes as I was working on the tests... There could be a
[another version of] lookup that doesn’t increment the count, maybe, and then I might have to add
some tests there.” In other words, P4 merely added a variant of the existing lookup function to their
API that had an “increment” parameter, and then relied on Copilot to autofill the test cases to reflect
this semantic change.

Theme 3: Copilot Leads to Superficial Understanding and Tests. In the no Copilot group,
participants demonstrated significantly deeper understanding of the problem requirements. P1 partic-
ularly exemplifies this in the No Copilot group. P1 modified their removeItem and checkNextItem
functions in T1 to throw an exception if the item is not in the list. P1 subsequently modified all of his
tests. They originally wrote their tests in a high-level psuedocode, but later rewrote them as formal
specifications, with significantly greater detail. For instance, in the test for deleting an item from the
list, P1 initially wrote the following psuedocode:

Description: in this test, I will remove an item from the todo list. To remove
an item, the test will ensure that the item does not exist in the todo list after
it is removed. this unit test will test todo lists that have the item and todo
lists that do not have the item.

After modifying the API, P1 updated this description to include the following:

Formal specification:
1. For all todo lists, if the deleted item is in the todo list before the delete
operation, the deleted item is not in the todo list after the delete operation.
2. For all todo lists, if the deleted item is not in the todo list before the
delete operation, there is an exception.

This addition starts to closely align with the level of detailed comprehension P1 would need when
actually writing the implementation in a real-life TDD workflow.

In contrast, in the Copilot group, when writing a test for ”should be idempotent to double-
replacement” in T1, P3 simply said ”this should do something,” and then had Copilot generate the
entire test, which they did not modify further. They also noted that if they had access to more
sophisticated tools like Cursor AI, ”By now, Cursor would have already got this done... it suggests
if it sees me do this three times, it would just figure it out,” but ”this stuff is pretty boring stuff, so
I don’t think the Copilot’s gonna mess it up.” This demonstrates P3’s reliance on Copilot to write
the tests and assumption that Copilot will do it correctly. After completing T1, when asked if they
considered that they needed to keep the list sorted by due date, P3 articulated ”I did not think about
that invariant,” i.e. they forgot to both write tests for this invariant and include this invariant in
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the API, even though it was explicitly indicated in the task prompt. In contrast, P1 clearly included
the due-date sort invariant in their API and in every relevant test they wrote. Finally, also in the
Copilot group, P4 revealed that in T2, Copilot initially gave them ”nonsensical” suggestions as Copilot
didn’t reference the API, but once they started writing tests, Copilot picked up on the patterns and
auto-generated code for them. P4 said Copilot also frequently generated tests that were incorrect,
leading them to eventually need to ”read the code to make sure it was correct.” Overall, P4 felt that
Copilot ”helped me with writing code but not really about understanding the requirements.”

In addition to more superficial understanding, the test suites in the Copilot group were consistently
more surface level and smaller in scope than the no Copilot group. For instance, consider T3. P2 (no
Copilot) and P4 (Copilot) both included tests for checking if deleting a link returns a success code,
listing all shortened links for a given URL works, looking up shortened links works, and shortening a
URL returns a success code. However, P2 also included tests for checking if the number of visits to
any version of a link is correct, newly shortened links are actually functional, deleted shortened links
actually become nonfunctional, and that pre- and post-shortened links all go to the same destination.
These are significantly more in-depth than P4’s test suite. P4, however, did add additional semantic,
rather than functional variations to their tests, which brings us back to Theme 2. For instance, P4
checks if trying to delete a nonexistant URL returns an error (this is merely a semantic variation of
the generic delete function). This helps reveal that Copilot helps to detect edge cases of existing tests,
but not to produce deeper, more comprehensive test suites.

3.2 Quantitative Analysis of Task Completion Time

Participant ID Task ID Task Completion Time (mins)
P1 (no Copilot) T1 49.67
P2 (no Copilot) T3 29.22
P3 (Copilot) T1 20.03

T2 19.07
P4 (Copilot) T2 20.67

T3 20.73
Table 3. Participants’ time to complete each task, in minutes

Group Average Task Completion Time Standard Deviation
No Copilot 39.45 10.23
Copilot 20.13 0.6680

Table 4. Average and standard deviation of task completion times within the No Copilot and Copilot groups,
in minutes

Overall, we observed a significant reduction in development time in the Copilot group compared
to the No Copilot group. The standard deviation was quite large in the no Copilot group, but this
may be due to the very small sample size (N=2). Even so, the shortest time in the No Copilot group
was still approximately 9 minutes longer than the longest time in the Copilot group.

3.3 Post-Task Surveys
After completing their assigned task(s), each participant was asked
• How much did modifying the test suite contribute to your understanding of the problem require-

ments from 1 (least) to 10 (most)?
• If applicable, please elaborate how modifying the test suite impacted (1) your comprehension of

the problem requirements and (2) how you modified the API.
In addition, the participants in the Copilot group were also asked
• How do you feel Copilot impacted (1) your ability to write the test suite and (2) your complete

understanding of the problem requirements?
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The quantitative ranking results from the first question are summarized in Table 5. Though P1
reported significantly lower impact of the test suite on their problem comprehension, their actions
from Section 3.1 demonstrate otherwise, and this may be a result of skewed self-perception from P1,
another inevitability from our very sample sample size.

ID Impact
P1 (no Copilot) 3
P2 (no Copilot) 8
P3 (Copilot) 8
P4 (Copilot) 9

Table 5. Participants’ rating of how much modifying the test suite impacted their understanding of the
problem requirements, from 1 (not at all) to 10 (profoundly).

We also present a thematic analysis of participants’ answers to the written survey questions.

Theme 1: Test-Driven Discovery of Problem Requirements Across Both Groups. After writ-
ing their tests, in the no Copilot group, P1 reflected that they ”realized that a couple of my methods
needed to throw exceptions and those exceptions should be described in the API.” P2 reflected that
modifying the test suite ”forced me to think more deeply about how a real programmer would interact
with the API.” and helped them ”better understand what satisfying the problem requirements would
look like,” as well as ”helped me make modifications to the API to meet those requirements.” In the
Copilot group, P3 wrote that modifying the test suite ”made me think about corner cases and how
I could use the API.” Specifically, in task T1 (ToDo List), they realized they ”needed to able to dif-
ferentiate two tasks that were otherwise identical.” Finally, P4 reported that they ”didn’t realize edge
cases until I worked on the test suite (e.g., parse errors, need to return count of URL lookup, need
an option not to increment count, etc.).” Specifically, P4 recalled how they ”changed the signature
(number to Result<number, Error>) [for their evaluate function] to handle edge cases.”

Theme 2: Copilot Leads to Superficial Understanding. P3 did not feel Copilot helped them
understand the problem requirements. For instance, although P3 felt that Copilot ”helped accelerate
my writing of the test suite,” they reported that ”As far as understanding the problem requirements,
I don’t think copilot helped.” In fact, P3 ”missed testing the invariant for the ToDo task, and Copilot
didn’t suggest anything. I also had to manually tweak examples that Copilot generated to try and
make them better tests.” P3 did however did feel Copilot was good at picking up on the structure
of the tests, which ”allowed me to focus more on what good tests would look like, and less on the
syntax of jest, and [more on] translating natural language to code,” but this did not translate into P3
gaining enhanced understanding of the problem. Finally, P4 went on to report that although Copilot
”helped me write test suite with fewer keystrokes” (i.e. more quickly), ultimately Copilot ”didn’t help
me much about understanding the problem requirement.”

4 Limitations
There are several limitations to our study. In particular, the tasks are limited in scope due to the time
limit we imposed on each participant. A more complex task with greater time allocation would enable
more realistic scenarios. P3 in particular noticed this as they worked on T1 (ToDo List): ”I think that
my process would probably be a lot more iterative if I were actually trying to build a ToDo list app
or something you know and it was more informed by the UI.” This continued as they completed T2
(Prefix Calculator), noting ”you could write a full on, you know. Parse it into an AST and do a tree
and stuff. But [this] seemed like this was simple enough that like this isn’t even a parser really, it’s
just a lexer.”

In addition, the differing levels of technical background among participants, as well as the small
number of participants, poses limitations on the generalization of our results. We would ideally extend
our study to a larger and more suitable subject pool in the future. Finally, recall that we chose to
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have participants write psuedocode for their Jest test suites, rather than executable JavaScript code.
This decision was made due to the differing technical backgrounds as well as the time constraints,
but inevitably limits the authenticity of our results. Ideally, participants would write executable test
suites in a future version of this study.

5 Discussion
In summary, our analyses from Section 3 result in the following conclusions:
1. All participants refined their understanding of the problem requirements via writing the test suite.
2. Participants in the Copilot group made semantic changes to their existing API after writing their

test suite, whereas participants in the no Copilot group made additional functional changes to their
API after writing their test suite.

3. Participants in the Copilot group had significantly shorter development times than the no Copilot
group, but demonstrated superficial understanding of the problem requirements and shallower
scope of their test suite.

We arrive at these conclusions via thematic analysis of participants’ live transcriptions that we sourced
during the studies (Section 3.1), quantitative analysis of task completion time (Section 3.2), and
written post-task surveys (Section 3.3). These findings inform us that developers using the TDD
workflow may indeed benefit from using Copilot if they value coding speed above all else. However,
they should be cautioned that using Copilot for their test suites will likely result in a superficial result,
both in problem comprehension and test coverage, and may require more effort spent later, such as
in the subsequent implementation stage, to resolve these shortcomings. In other words, Copilot can
be seen as a crutch in the development process, speeding up initial progress but hindering quality. By
addressing the limitations identified in Section 4, particularly pertaining to small sample size, task
simplicity, and participants’ use of pseudocode in our pilot study, we can further solidify these results
and generalize them to broader populations of developers.

6 Future Work
In the future, we plan get IRB approval for this work and run our study on a much larger sample size.
We intend to source participants with more evenly matched and significant JavaScript/Jest/Copilot
backgrounds, such as from UCSD’s software engineering courses. This base knowledge will enable us
to ask all participants to write actual Jest code, instead of psuedocode, for their tests, which more
accurately models a real-life TDD process.

We also plan to modify our tasks to have more complicated and nuanced edge cases, as we realize
this may give greater insight into the impact of Copilot on participants’ problem comprehension. We
will also consider redesigning our tasks to more accurately reflect tasks engineers commonly face in the
industry. This will also require conducting longer studies, as one hour is not long enough to accurately
model a realistic software development task. Finally, we intend to supplement our current post-task
survey to a semi-structured interview, which will lead to follow up questions and richer discussion.
We will also modify our survey to query quantitative ranking of the impact on Copilot on the problem
understanding (currently, we just ask about writing the tests in general).

7 Conclusion
Test-Driven Development is a widely studied software development process where developers write
tests for desired features and subsequently make them pass [1]. Most studies on TDD in an industrial
setting have reported that it improved the external quality of delivered software and reduced complexity,
but some studies have reported that it reduced productivity as well [2]. With the nascent application
of generative AI to software development [6], we investigate the potential for generative AI to enable
developers to adopt TDD without sacrificing productivity. To do so in an environment where TDD
proficiency among subjects is scarce, we relax the constraints to focus on Test-First Development
(TFD), which only requires tests to be written before their corresponding implementation.

We focus on how the use of GitHub Copilot for API design and test writing affects both productivity
and quality of work. We conducted a between-subjects pilot study with 4 computer science students
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at UC San Diego. Subjects were asked to write a comprehensive API and corresponding test suite in
pseudocode for two abstract descriptions of tasks. They were randomly assigned to two groups: one
encouraged them to use Copilot, while the other did not make Copilot available to them. Through
thematic analysis, we discover that subjects in the No Copilot group made more profound changes to
their API as they wrote their tests and that, most importantly, subjects in the Copilot group found
that Copilot did not contribute to their understanding of problem requirements and led to a reduction
in their test suites’ scope.

In light of these preliminary findings, we warn developers against over-reliance on generative AI
tools for requirement specification, API design, and test writing against an API, as they can lower
the quality of produced work. If developers choose to use AI tools, they should treat generative AI
output critically and remain engaged with the design process rather than trusting AI to understand
their requirements. Finally, to further assess the role of generative AI in Test-Driven Development,
we plan to conduct a more comprehensive study with a wider variety of participants, more realistic
scenarios, and longer durations. We hope that our results can guide industry practice on upholding
software quality in the era of generative AI.
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