
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

111

ProCon: Continuous Enumeration for Just-In-Time

Bottom-Up Synthesis

KYLE THOMPSON, ILANA SHAPIRO, and ANIRUDH CANUMALLA, UC San Diego, USA

In order to scale synthesis algorithms to the vast size of the search space without coupling the algorithm with
existing training datasets, recent work has combined probabilistic models with just-in-time learning. With
just-in-time probabilistically-guided weighted bottom-up-enumerative search, researchers have created an
off-the-shelf approach that learns from partial solutions during the synthesis process itself. However, current
approaches are based on discrete size-based enumeration, which does not leverage the full power of the
probabilistic model since it involves rounding the probabilities to discrete weights. To overcome this limitation,
we present continuous rule-based enumeration, in which programs, are enumerated in order of continuous,
nonrounded weights as determined by a given weighting function. We implement our approach in a tool
called ProCon, which operates on the syntax-guided synthesis (SyGuS) format and evaluate it on a variety of
SyGus benchmarks. We demonstrate that ProCon’s more precise enumeration can solve SyGus benchmarks
while enumerating fewer programs.

CCS Concepts: • Software and its engineering→ Domain specific languages; Programming by exam-
ple;

Additional Key Words and Phrases: Program Synthesis, Probabilistic Models

ACM Reference Format:
Kyle Thompson, Ilana Shapiro, and Anirudh Canumalla. 2024. ProCon: Continuous Enumeration for Just-In-
Time Bottom-Up Synthesis. J. ACM 37, 4, Article 111 (March 2024), 11 pages. https://doi.org/XXXXXXX.XX
XXXXX

1 INTRODUCTION

Syntax-guided synthesis, or SyGus, is a popular synthesis framework in which the programmer
provides a syntactic template for the desired program in addition to the correctness (i.e. semantic)
specification. A common instance of SyGuS is a search problem whose input consists of context-
free grammar (CFG) that defines the space of possible programs, and the semantic specification
comprises of a set of input-output examples. The input-output example paradigm is also called
Programming-by-Example, or PBE. From the CFG and input-output examples, the goal of the
synthesizer is to find a program generated by the grammar whose behavior is consistent with the
semantic specification. The use of inductive semantic specifications such as input-output examples
is also known as inductive program synthesis [Alur, Bodik, et al. 2013].

One of the primary challenges in synthesis is how to efficiently search for the desired program in
the monumentally vast space of possible programs. As the synthesizer considers longer programs,
synthesis quickly becomes intractable due to the size of the search space. To improve the scalability
of synthesis models, several approaches optimizing synthesis search algorithms have been studied,
including EUSolver [Alur, Radhakrishna, et al. 2017], Euphony [Lee et al. 2018] (which guide

Authors’ address: Kyle Thompson, r7thompson@ucsd.edu; Ilana Shapiro, ilshapiro@ucsd.edu; Anirudh Canumalla,
acanumalla@ucsd.edu, UC San Diego, 3235 Voigt Dr, La Jolla, CA, USA, 92093.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0004-5411/2024/3-ART111 $15.00
https://doi.org/XXXXXXX.XXXXXXX

J. ACM, Vol. 37, No. 4, Article 111. Publication date: March 2024.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

111:2 Thompson et al.

top-down search), and TF-Coder [Shi et al. 2022], Bustle [Odena et al. 2021], Heap Search
[Fijalkow et al. 2022], Probe [Barke et al. 2020], and Bee Search [Ameen and Lelis 2023] (which
guide bottom-up search).
Bottom-up enumeration is a dynamic programming technique that maintains a bank of enu-

merated programs and builds new programs by applying production rules to programs from the
bank. A key limitation of most guided bottom-up search methods is how it enumerates programs
during the search. Probe, for instance, improves its performance by modeling its weight system
after size-based enumeration, where the program bank is indexed by AST size, rather than height,
as this has been observed empirically to be more efficient [Barke et al. 2020]. However, in weighted
enumerative search, both height-based and sized-based approaches require discrete values to index
the bank, meaning that transforming these approaches to rank programs by continuous, real-valued
weights is difficult. Thus, Probe, as well as the similar models in Bustle and TF-Coder, rank
programs by rounding real-valued probabilities to discrete costs, i.e. only enumerating programs
approximately in the order of decreasing likelihood. This results in a loss of the full power of the
probabilistic model used to guide the search.
To overcome this limitation, we propose an alternative approach we call continuous bottom-up

enumeration. Rather than ranking programs by any discrete metric, we rank nonterminals from the
grammar in order of their real-valued continuous weights, allowing us to leverage the full power
of the probabilistic ranking. Specifically, we index the program bank by nonterminals rather than
costs, and ensure that the bank is ordered by continuous weights. We implement our approach
in a tool called ProCon that we build on top of Probe. Our approach meshes well with Probe’s
just-in-time-learning paradigm, in which the probabilistic model is learned on the fly. We evaluate
ProCon on 77 string benchmarks and demonstrate that we are able to find the solution with fewer
examples than Probe.

Contributions. To summarize, this paper makes the following contributions:
(1) Continuous bottom-up enumeration: a new approach to probabilistically-guided bottom-up

enumerative search that enumerates programs in order of real-valued weights (Sec. 3).
(2) ProCon : a prototype implementation of our continuous ranking system with just-in-time-

learning and its evaluation on 77 string benchmarks (Sec. 4).

2 RELATEDWORK

EUSolver extends traditional top-down enumerative search approach with a divide-and-conquer
algorithm, enumerating smaller expressions that are correct on subsets of inputs, as well as the
predicates that distinguish these subsets. Then, it combines these expressions and predicates using
a multi-label decision tree learning algorithm to form a conditional expression using Boolean
combinations of the enumerated predicates [Alur, Radhakrishna, et al. 2017]. Euphony builds upon
EUSolver by extending the grammar with a probabilistic model that determines the likelihood
of each program. Euphony achieves superior performance by combining a probabilistic model
with weighted top-down enumerative search (specifically, A*) to efficiently enumerate programs
in the order of their likelihood. EUSolver learns a probabilistic higher order grammar (PHOG)
from known solutions of synthesis problems solved by existing techniques in order to incorporate
a richer context [Lee et al. 2018].
More recently, Probe has drawn from Euphony to (1) develop guided bottom-up-search, which

uses a PCFG to rank enumerated programs by likelihood via bottom-up, rather than top-down,
enumerative search and (2) use the partial, yet complete, programs encountered during bottom-up
search to enable just-in-time learning of the model. In other words, Probe learns a PCFG “just-
in-time," i.e. during synthesis, rather than ahead of time, which eliminates the dependency on
large and often difficult to obtain training datasets that tools like Euphony and EUSolver require.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: March 2024.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

ProCon: Continuous Enumeration for Just-In-Time Bottom-Up Synthesis 111:3

Programs are enumerated by discrete cost levels determined by the PCFG. The weighted top-down
A* search in EUSolver is incompatible with just-in-time-learning, since top-down enumeration
generates incomplete programs that cannot (yet) be evaluated [Barke et al. 2020].
TF-Coder, Bustle, and Heap Search take a similar approach: all use a cost function to guide

bottom-up search. The function these systems employ favors programs that are more likely to
lead to a solution. TF-Coder’s cost function requires a manually crafted set of weights for each
operation of the language. During the search, TF-Coder prioritizes combining programs with lower
weights than programs with larger weights, thus biasing the search, where the weight of a program
is defined as the sum of the weights of the production rules used to generate the program [Shi
et al. 2022]. Bustle, on the other hand, uses a neural network as a cost function to compute the
probability that a program is part of a solution. The network is a binary classification model that
receives the input-output pairs of the task and the output of a program to each of the input values,
and returns the probability that the program is a subprogram of a solution to the task [Odena et al.
2021]. Finally, unlike TF-Coder, Bustle, and Probe, Heap Search uses a data structure based
on heaps to efficiently enumerate all programs in non-increasing order of the real-valued PCFG
probabilities. However, it does so with respect to the 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 of the programs, meaning that
each program’s AST must be created to determine its cost. This means that Heap Search can
generate a very large number of programs that are more expensive than the solution program.
Heap Search also sacrifices observational equivalence to achieve its best-first ordering.
To our knowledge, Bee Search represents the current state-of-the-art in guided bottom-up

enumerative search. Bee Search performs search in a best-first ordering according to novel cost
functions from both the pre-generation (i.e. before AST generation, like Probe) and post-generation
(i.e. after AST generation, like Heap Sort) types of cost functions. Bee Search performs best-first
search with respect to the is with respect to the 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 of programs – i.e. Bee Search does
not even create in memory programs that are more expensive than the solution program, thus
circumventing the Heap Sort problem. Bee Search’s generation-time best-first search is achieved
by searching in an abstract cost-tuple space. One cost-tuple space is defined for each non-terminal
rule, and each cost-tuple state represents a set of programs that are to be generated, such that the
best-first ordering of programs is attained. Bee Search does not sacrifice observational equivalence
checks in its approach. It performs no worse, and usually outperforms, Probe, TF-Coder, Bustle,
and Heap Search on all its benchmarks, particularly for larger DSLs [Ameen and Lelis 2023].

3 IMPLEMENTATION

3.1 Problem Description

We formulate our problem identically to [Barke et al. 2020]. Our goal is to find programs that
satisfy a given set of input-output examples, E. Our programs must adhere to a specified grammar,
G = (N , Σ,S,R), where N is a set of nonterminal symbols, Σ is a set of terminal symbols, S is the
starting nonterminal, and R is a set of production rules. Any given production rule 𝑅 ∈ R is of
the form 𝑁 −→ (𝑡 𝑁1 𝑁2 ... 𝑁𝑘). We use 𝑁rhs (𝑅) to denote the tuple of nonterminals on the right
hand side of the rule. We use 𝑁lhs (𝑅) to denote the nonterminal on the left hand side of the rule.

3.2 Background on Probe architecture

Since ProCon builds on Probe’s architecture, we first provide an overview of Probe’s system that
we go on to modify. At a high level, Probe takes in as input an inductive synthesis problem in
SyGuS format; specifically, a context-free grammar of the desired DSL and a set of input-output
examples. It then alternates between a synthesis phase and a learning phase until a solution is found
or timeout is reached, as seen in Figure 1. This feedback loop enables Probe’s just-in-time-learning.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: March 2024.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

111:4 Thompson et al.

In the synthesis phase, Probe searches over the space of programs in order of increasing discrete
costs. During the learning phase, Probe updates the PCFG using the partial solutions found in the
synthesis phase [Barke et al. 2020].

Fig. 1. Overview of Probe [Barke et al. 2020]

For the synthesis phase, Probe’s algorithm takes a set of input-output examples and enumerates
programs in the order of increasing discrete costs according to the PCFG until it finds a program
that satisfies the entire specification or reaches a certain cost limit. The algorithm maintains a
search state that consists of (1) the current discrete cost level; (2) the program bank storing all
enumerated programs indexed by their cost; (3) the evaluation cache storing evaluation results
of all programs in the bank in order to check for observational equivalence; and (4) the set of all
enumerated partial solutions.

For the learning phase, Probe uses a simple closed formula to compute new probabilities for each
production rule based on the highest proportion of input-output examples that any partial solution
derived using this rule satisfies. Since size-based bottom-up enumeration is not amenable to real-
valued costs, Probe enumerates programs approximately in the order of decreasing likelihood by
converting CFG rule probabilities into discrete costs (the rounded negative logs), which determine
the current cost level of that program. The program bank is then indexed by cost, and many
programs will end up at the same cost level [Barke et al. 2020].
Every time the PCFG is updated during a learning phase (which happens after the cost level

changes), Probe restarts the bottom-up enumeration from scratch, i.e. it empties the program bank
and evaluation cache, and resets the current cost level to zero. Any update to the PCFG renders the
program bank outdated, and updating the bank to match the new PCFG requires the amount of
computation and/or memory that does not pay off in relation to the simpler approach of restarting
the search [Barke et al. 2020].
ProCon only alters the synthesis phase of Probe’s algorithm. It eliminates the need to round

the CFG rule probabilities for each program to a discrete cost level, and indeed eliminates the need
for cost levels that comprise multiple programs entirely by ranking non-terminals, rather than
programs, by their real-valued probabilities.

3.3 Enumeration by Real-Valued Likelihood

In this section, we describe how to perform bottom-up enumeration by real-valued weights. Our
algorithm supports any function of the form𝑊 : L(G) −→ R+, where L(G) is the language
defined by grammar G.

Our algorithm uses𝑊 (𝑃) to assign a weight to the root node of the input program 𝑃 . The total
weight of a program 𝑃 is the sum of the weights of all of the nodes in 𝑃 , denotedW(𝑃).

J. ACM, Vol. 37, No. 4, Article 111. Publication date: March 2024.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

ProCon: Continuous Enumeration for Just-In-Time Bottom-Up Synthesis 111:5

For example, consider the following tiny language:
S := e
e := arg | (substr e n n)
n := 1 | 0 | (+ n n)

Suppose this tiny language had a weight function that partially consisted of

𝑊 (0) = 0.1
𝑊 (1) = 0.8
𝑊 (arg) = 0.5
𝑊 ((substr arg 0 1)) = 0.3

In this case, W((substr arg 0 1)) = 1.7
Our goal is to enumerate programs in order of weights as determined byW. For this language,

that would mean enumerating programs in the following order: 0, arg, 1, (substr arg 0 1). Like
previous approaches, we maintain a bank of programs that we have already enumerated. We build
new programs by combining programs in the bank. Unlike previous approaches that index the bank
by integral program costs, we index the bank only by nonterminal. For each nonterminal in the
bank, the list of previously enumerated programs is sorted by real-valued weights. This invariant
is cheap to maintain as our algorithm enumerates programs by weight, so we can simply append to
the end of the bank at the proper nonterminal when we enumerate a new program.

3.3.1 Enumerating Programs for a Particular Rule. Wewill first describe the algorithm to enumerate
programs for a particular production rule 𝑅 ∈ R. We enumerate programs from rule 𝑅 by enu-
merating subterms to use in the non-terminals of rule 𝑅. We enumerate these tuples of subterms
in order of the total weight of the tuple. Since the bank of programs is ordered by W, it is easy
to enumerate subterms in order of weight by doing a Dijkstra search over indices into the bank.
For sake of example, suppose we want to enumerate subterms to the rule (substr e n n). We
can achieve this enumeration by enumerating indices into the sequences bank[e], bank[n], and
bank[n]. It is obvious that the tuple of subterms with the lowest total weight is at indices (0, 0,
0). From here, it is clear that the tuple of subterms with the next lowest weight is at indices (1, 0,
0), (0, 1, 0), or (0, 0, 1). Thus our Djikstra search forms a tree where nodes are tuples of indices,
and each child of a node contains the same tuple of indices with one index incremented. Note that
this naive implementation of determining the children of a node could lead to duplicates. This is
visualized more clearly in Figure 2. One could take care of duplicates by either maintaining an

Fig. 2. Naive Enumeration with Duplicates

explored set, or by maintaining a bitset of permissions at each node to determine which indices

J. ACM, Vol. 37, No. 4, Article 111. Publication date: March 2024.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

111:6 Thompson et al.

can be incremented. We opt to maintain a bit set at each node since we hypothesize that it is more
efficient. This is visualized in Figure 3, where the red indices are “fixed" and do not have permission
to get incremented.

Fig. 3. Enumeration Without Duplicates

Note that this Djikstra search must happen alongside the growing of the program bank. If we
just threw tuples of indices into the frontier, they might be out of bounds of the current program
bank. Therefore, we maintain a set of indices, called “abstract candidates” that do not point to
anything yet, but will point to something once the bank grows larger. Once an abstract candidate
points to concrete subprograms, it can be added to the frontier. The full algorithm for enumerating
subprograms to a rule 𝑅 is given in Appendix A.

3.3.2 Enumerating All Programs. At any particular iteration, to make sure we find the program
with the next lowest weight, we must consider the next candidates from each production rule.
Specifically, we can keep track of the lowest-weight program so far and enumerate new programs
from a production rule while the weight of the children of the new programs is smaller than the
best candidate. Note that we do the comparison with the children because the enumerator for the
production rule is in order of child weight, not program weight. Furthermore, we know that the
program weight is greater than or equal to the child weight since𝑊 (·) is positive. Once we find
the next best program, we add it to the program bank. The full details for enumerating programs in
order of likelihood is in Appendix B.

3.3.3 Full ProCon Solver. We combine our enumeration by weight with Probe’s on-the-fly weight
updates win Appendix C. Note that these on the fly weight updates assume that𝑊 is in the form of a
PCFG. We use a program to update the PCFG if the program satisfies a unique subset of input output
examples. We found that it is very important to do these updates in batches. One could imagine
updating the PCFG after a single program satisfies a unique set of solutions. However, this gives
too much power to individual programs and can lead to a noisy search. This is roughly analogous
changing the cost level in Probe after just one program is added to Probe’s cost-indexed version of
the bank, which would lead to Probe’s PCFG update. We thus set a threshold (updateWeightLevel
in the psuedocode) leading to a variable sized “batch" of programs to accept based on their weights,
before updating the PCFG with this entire batch. Importantly, the threshold is real-valued, since
the weights are real-valued.

4 EVALUATION

We evaluated ProCon against 77 string benchmarks with a timeout of 60 seconds. We notice that
ProCon solves more benchmarks per program enumerated (Figure 4), but it enumerates programs
slower than Probe (Figure 5). We hypothesize that ProCon is slower at enumerating programs due
primarily to the enqueueing and dequeing in Appendix A. These operations can become expensive
since the queue of candidates can grow to the tens of thousands.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: March 2024.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

ProCon: Continuous Enumeration for Just-In-Time Bottom-Up Synthesis 111:7

Fig. 4. Evaluation against Probe by number of programs enumerated

Fig. 5. Evaluation against Probe by wall clock time

5 CONCLUSION AND FUTUREWORK

We have presented an improvement to bottom-up enumerative synthesis with just-in-time learning
that leverages the full power of the associated probabilistic model by enabling continuous, real-
valued enumeration. We have implemented our algorithm in a tool called ProCon that works
with the popular SyGuS input format and uses input-output examples as semantic constraints. We
evaluated ProCon on 77 string benchmarks, and found that it was able to arrive at the solution with
fewer enumerated programs than Probe, although there appears to be a computational bottleneck
somewhere in our implementation since Probe is still faster.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: March 2024.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

111:8 Thompson et al.

In future work, we would also like to improve the learning phase of ProCon’s algorithm by
exploring other probabilistic models. Euphony demonstrated superiority of PHOGs over PCFGs in
their approach [Lee et al. 2018], and analogously it seems that ProCon could also be improved by
replacing its simple PCFG with a context-aware model. Note that such a model would get context
from subterms instead of incomplete programs. Of course learning a more sophisticated probabilistic
model would likely require training data which is currently not required ProCon. One interesting
direction could be incorporating a trained probablistic model with Probe’s learning on the fly since
Probe’s weights incorporate information from the specification.
We would also like to concretely understand why more-precise enumeration might be better.

The learning phase of this algorithm makes it difficult to debug exactly why ProCon comes to
a solution before Probe in a particular example. We would like to run an experiment where we
fix the weights of the search to be the weights that lead to the solution. Then, we can run a more
direct comparison between continuous and discrete enumeration without worrying about changing
weights. Finally, it is important include Bee Search as a baseline in our future evaluations, since
they currently represent the state of the art in guided bottom up synthesis.

REFERENCES

Rajeev Alur, Rastislav Bodik, et al.. Oct. 2013. “Syntax-guided synthesis.” 2013 Formal Methods in Computer-Aided Design,
(Oct. 2013). doi: 10.1109/fmcad.2013.6679385.

Rajeev Alur, Arjun Radhakrishna, and Abhishek Udupa. 2017. “Scaling Enumerative Program Synthesis via Divide and
Conquer.” Tools and Algorithms for the Construction and Analysis of Systems, 319–336. doi: 10.1007/978-3-662-54577-5_18.

Saqib Ameen and Levi H. S. Lelis. 2023. “Program Synthesis with Best-First Bottom-Up Search.” J. Artif. Intell. Res., 77,
1275–1310. doi: 10.1613/JAIR.1.14394.

Shraddha Barke, Hila Peleg, and Nadia Polikarpova. Nov. 2020. “Just-in-Time Learning for Bottom-Up Enumerative Synthesis.”
Proceedings of the ACM on Programming Languages, 4, OOPSLA, (Nov. 2020), 1–29. doi: 10.1145/3428295.

Nathanaël Fijalkow, Guillaume Lagarde, Théo Matricon, Kevin Ellis, Pierre Ohlmann, and Akarsh Nayan Potta. 2022. “Scaling
Neural Program Synthesis with Distribution-Based Search.” In: Thirty-Sixth AAAI Conference on Artificial Intelligence,

AAAI 2022, Thirty-Fourth Conference on Innovative Applications of Artificial Intelligence, IAAI 2022, The Twelveth Symposium

on Educational Advances in Artificial Intelligence, EAAI 2022 Virtual Event, February 22 - March 1, 2022. AAAI Press,
6623–6630. doi: 10.1609/AAAI.V36I6.20616.

Woosuk Lee, Kihong Heo, Rajeev Alur, and Mayur Naik. June 2018. “Accelerating Search-Based Program Synthesis using
Learned Probabilistic Models.” Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and

Implementation, (June 2018). doi: 10.1145/3192366.3192410.
Augustus Odena, Kensen Shi, David Bieber, Rishabh Singh, Charles Sutton, and Hanjun Dai. 2021. “BUSTLE: Bottom-Up

Program Synthesis Through Learning-Guided Exploration.” In: 9th International Conference on Learning Representations,

ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net. https://openreview.net/forum?id=yHeg4PbFHh.
Kensen Shi, David Bieber, and Rishabh Singh. 2022. “TF-Coder: Program Synthesis for Tensor Manipulations.” ACM Trans.

Program. Lang. Syst., 44, 2, 10:1–10:36. doi: 10.1145/3517034.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: March 2024.

https://doi.org/10.1109/fmcad.2013.6679385
https://doi.org/10.1007/978-3-662-54577-5_18
https://doi.org/10.1613/JAIR.1.14394
https://doi.org/10.1145/3428295
https://doi.org/10.1609/AAAI.V36I6.20616
https://doi.org/10.1145/3192366.3192410
https://openreview.net/forum?id=yHeg4PbFHh
https://doi.org/10.1145/3517034

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

ProCon: Continuous Enumeration for Just-In-Time Bottom-Up Synthesis 111:9

A RULE ITERATOR PSUEDOCODE

Algorithm 1 Rule Iterator
Input: A rule from the grammar: 𝑅 ∈ G
Output: Iterator over programs from 𝑅 in order of the sum of the weights of the
subprograms composed by 𝑅.

1: procedure Setup
2: argQueues𝑁 ∈𝑁rhs (𝑅) ← bank(𝑁)
3: abstractCandidates← {((0, 0, ..., 0), (1, 1, ..., 1))}
4: concreteCandidates← []
5:
6: procedure UpdateAbstractCandidates
7: realizableCandidates← {𝑐 ∈ abstractCandidates | The indices are in bounds in the bank.}
8: abstractCandidates← abstractCandidates \ realizableCandidates
9: for 𝑐 ∈ realizableCandidates do
10: 𝑝 ← Realize(𝑐)
11: concreteCandidates.enqueue(𝑝)
12:
13: procedure NewAbstractCandidates(𝑐 ∈ C)
14: newAbstractCandidates← ∅
15: (_, _, indices, permissions)← 𝑐

16: for {𝑖 ∈ [0..|indices|) | permissions(𝑖)} do
17: newIndices(𝑗) ← if (𝑗 = 𝑖) then (indices(𝑗) + 1) else indices(𝑗)
18: newPermissions(𝑗) ← 𝑖 ≤ 𝑗

19: newAbstractCandidates = newAbstractCandidates∪ {(newIndices, newPermissions)}
return newAbstractCandidates

20:
21: procedure Peek
22: UpdateAbstractCandidates()
23: return concreteCandidates.peek
24:
25: procedure NextProgram
26: UpdateAbstractCandidates()
27: nextCandidate← concreteCandidates.dequeue()
28: abstractCandidates← abstractCandidates ∪ NewAbstractCandidates(nextCandidate)

return nextCandidate

J. ACM, Vol. 37, No. 4, Article 111. Publication date: March 2024.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

111:10 Thompson et al.

B PROGRAM ITERATOR PSUEDOCODE

Algorithm 2 Program Iterator
Input: A Grammar G
Output: Iterator over Programs from G in order of likelihood.

1: procedure Setup
2: candidateQueue← []
3: ruleIterators(𝑅) ← Rule Iterator for 𝑅
4: bank𝑁 ∈G (𝑁) = []
5:
6: procedure NextProgram
7: best← if (|candidateQueue| = 0) then null else candidateQueue.peek
8: for 𝑅 ∈ R do
9: 𝑟 ← ruleIterators(𝑅)
10: while hasNext(𝑟) ∧ (best = null ∨ r.peek.childWeight < best.weight) do
11: 𝑝 ← r.nextProgram()
12: if 𝑝 is observationally unique then
13: candidateQueue.enqueue(𝑝)
14: best← candidateQueue.head
15: result← candidateQueue.dequeue())
16: bank(result.nonterminal).append(result)
17: return result

J. ACM, Vol. 37, No. 4, Article 111. Publication date: March 2024.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

ProCon: Continuous Enumeration for Just-In-Time Bottom-Up Synthesis 111:11

C PROCON SOLVER PSUEDOCODE

Algorithm 3 ProCon Solver
Input: A Grammar G a set of I/O examples E, and an update granularity 𝑢.
Output: A program from 𝐺 that satisfies all examples in E.

1: procedure Solve
2: uniquePartialSolutions← ∅
3: while True do
4: enumerator← program iterator for 𝐺
5: interestingPrograms← ∅
6: updateWeightLevel← 𝑢

7: repeat
8: nextProg← enumerator.nextProgram()
9: coverage← examples in E staisfied by nextProg
10: if coverage = E then
11: return nextProg
12: if coverage ∉ uniquePartialSolutions then
13: uniquePartialSolutions← uniquePartialSolutions ∪ coverage
14: interestingPrograms← interestingPrograms ∪ nextProg
15: if 𝑢 ≤ nextProg.weight ∧ interestingPrograms = ∅ then
16: updateWeightLevel← updateWeightLevel + 𝑢
17: until 𝑢 ≤ nextProg.weight ∧ interestingPrograms ≠ ∅
18: Call UpdateProbabilities(interestingPrograms)

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

J. ACM, Vol. 37, No. 4, Article 111. Publication date: March 2024.

	Abstract
	1 Introduction
	2 Related Work
	3 Implementation
	3.1 Problem Description
	3.2 Background on Probe architecture
	3.3 Enumeration by Real-Valued Likelihood

	4 Evaluation
	5 Conclusion and Future Work
	A Rule Iterator Psuedocode
	B Program Iterator Psuedocode
	C ProCon Solver Psuedocode

