
pgen-rs: Efficient and User-friendly Genomic Data Wrangling
Aided by LLMs

Ilana Shapiro
UC San Diego
La Jolla, USA

Cole Kurashige
UC San Diego
La Jolla, USA

Savitha Ravi
UC San Diego
La Jolla, USA

ACM Reference Format:
Ilana Shapiro, Cole Kurashige, and Savitha Ravi. 2018. pgen-rs: Efficient and
User-friendly Genomic Data Wrangling Aided by LLMs. In Proceedings of
Make sure to enter the correct conference title from your rights confirmation
emai (Conference acronym ’XX). ACM, New York, NY, USA, 4 pages. https:
//doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
In order to perform analyses on genomic data, bioinformaticians
often have to pre-process it to meet the formats of their tools or
requirements of their studies, such as changing file formats or
filtering to a specific subpopulation (examples from Tutorial 2 in
[4]). This data wrangling is not only (1) cumbersome because it is
mostly done via ad-hoc shell scripts or CLI tools, but also (2) slow
due to limitations in the file formats for storing the data itself.

To address theses issues, we developed pgen-rs. pgen-rs allows
users to (1) write their data wrangling requirements in natural lan-
guage, which is then converted to an executable DSL and actualized
with (2) a Rust-based high-performance genomic data processor
enabled by the PLINK file format [2].

1.1 Background
Bioinformaticians have expertise in biology and data analysis. Many
conduct research by analyzing population genomes using data sci-
ence techniques, for example by Genome-Wide Association Studies,
which attempt to associate complex traits such as disease proclivity
or eye color to particular parts of the genome [4]. The prevailing
format for performing these analyses is the variant call format (VCF)
first developed for the 1000Genomes project [3]. Existing tools for
wrangling VCFs such as bcftools [1] are complex many-purpose
CLI tools that are not user friendly (Problem (1)).

Improvements in next-generation sequencing (NGS) technolo-
gies for DNA have enabled many small bioinformatics laboratories
to sequence and analyze entire genomes [5]. These sequencing
files are much larger than before, with sizes of 50-100 gigabytes
per sample in contrast to the original VCFs for the 1000Genomes
project which are orders of magnitude smaller. Because analyses
like GWASes which previously ran on VCFs could still take hours
or days, new formats such as PLINK [2] had to be developed before
it would even be possible to run them on NGS data. Unfortunately,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

while these new formats enable the actual analyses that bioinfor-
maticians perform to be efficiently run on ever-increasing amounts
of data, there has been no efficient equivalent for bcftools or
similar programs (Problem (2)).

Our tool is exciting because it can help bioinformaticians be
more efficient, and by lowering the learning curve to use it, it opens
the door to novices.

1.2 Additional Background: PLINK vs VCF for
Data Wrangling

Problem (2) relates to the efficiency of data wrangling operations
(e.g. filtering or querying) on different genomic data formats. In this
section we want to give an intuition for why a tool like bcftools
is held back by the file format it operates on, and how developing a
tool for the PLINK format enables it to be more efficient.

An important part of data wrangling is identifying which data to
keep and which to discard. The data stored in VCF and PLINK files
can be largely divided into two categories: genotypes and metadata.

1.2.1 Genotypes. Large parts of the human genome are the same.
A genotype can be thought of as summarizing what a person’s
DNA is at each of the varying loci in the genome; this is much more
compact than writing out the entire DNA sequence. A genomic
data file such as a VCF can be thought of as a matrix where each
row corresponds to a locus of variation (known as a “variant”) in
the genome and each column corresponds to the genotype of an
individual (known as a “sample”).

1.2.2 Metadata. Though the vast majority of these files are just
the (column-wise) concatenation of many individual genotypes,
they also contain metadata. At each variant (i.e. on each row), they
record information such as what chromosome and position in the
chromosome the variant comes from and the quality of the data
available at this variant (sequencing is not always 100% accurate).
At each sample (i.e. on each column) they record information such
as the sample identifier.

A key takeaway is that the metadata is at least an order of mag-
nitude smaller than the genotypes. A VCF containing the genotypes
of 1000 samples takes gigabytes, but its metadata takes megabytes.
And the metadata does not scale significantly as the number of geno-
types increases. A large part of identifying which data to keep can
be done using only metadata. The inherent limitation of VCF is
that metadata is coupled with genotypes, so in order to filter a VCF,
you must read the entire file, even though just the metadata would
suffice. Tools like bcftools, which process VCFs, deal with this by
building indices over the data, but in our observations these indices
are either not helpful or not used for data wrangling.

The PLINK format addresses this by decoupling metadata and
genotypes. Unlike a VCF, a PLINK “file” actually consists of three

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Kurashige, Ravi, Shapiro

separate files: one file containing just the genotypes and two files
containing the variant and sample metadata, respectively. This de-
coupling means that it is possible to first filter the metadata (which
is much smaller), take only the genotypes corresponding to the fil-
tered metadata, and then finish filtering these remaining genotypes
(if the filtering also depends on the genotypes themselves).

In summary, PLINK filters genomic data much more efficiently
than VCF due to its separation of metadata and genotypes.

2 METHODOLOGY
We began our project with the intent of following a participatory
design approach, seeking out meetings with students and profes-
sors in UCSD’s bioinformatics program who perform analyses on
genomic data. After confirming Problems (1) and (2) with them, we
sought to address these problems by improving upon a prototype
for genomic data wrangling developed by some of the authors for
a previous class project. This prototype, though efficient because
it uses PLINK instead of VCF files and it is written in Rust, did
not fully support the data wrangling in the workflows of UCSD
bioinformaticians. Thus, to fully address Problem (2), we made sev-
eral improvements, particularly the ability to mix metadata and
genotype queries.

This initial version of pgen-rs was just a tool for efficiently
wrangling genomic data, but this did nothing to address Problem
(1): at this stage it was still a CLI application which required its
users to learn a domain-specific language (DSL) in order to use it,
like they would if they were using bcftools. To address this barrier
to entry, we developed a natural language interface for pgen-rs
using an LLM (GPT-3.5). Now users need not learn an entire DSL:
they can describe their requirements in natural language to produce
efficient, executable queries in the DSL. Because the LLM produces
the queries as opposed to wrangling the data directly, these queries
can then be reused or incorporated into a bioinformatician’s end-
to-end data analysis workflow.

2.1 Demo
Please find the demo at https://youtu.be/qDJxDcQ1CJA

3 RESULTS
We conducted tests of GPT-3.5’s ability to synthesize queries in the
pgen-rs DSL, evaluating the results using a pass@3 metric. The
results of the tests are shown in Table 1. Of the 10 natural language
prompts, we have

pass@1 = 70%
pass@2 = 70%
pass@3 = 70%

More attempts did not improve accuracy, and for some questions,
the first attempt was the only one that was correct.

The first four questions tested basic queries involving the variant
and sample metadata files: “I want all the variants with a quality
value of 100," “I want all the samples with an IID of NA21106."
These basic queries required filtering the values of certain columns
given by name. The next six queries tested the ability of the LLM
to write queries that only used parts of the INFO column. GPT was
given a list of keys in the INFO column and their descriptions. The

5th, 6th, 7th, and 9th natural language queries were specifically
phrased to include either the key name or the wording from the
descriptions. The most common mistake made was not including
INFO[<keyname>], followed by incorrect use of escape quotes. For
the last question, “I want all the variants with an allele frequency
less than 0.6 in the European population," the given files did not
mention that EUR_AF meant European allele frequency, but GPT
was able to infer this meaning.

Finally, we also successfully used our tool to query and filter a
test pgen file. The queries were run over both sample and variant
metadata, and the filter included a predicate over both sample and
variant metadata. The result of applying the filter was successfully
compiled to VCF. Please see the video demo for the specific results
of this experiment.

4 REFLECTIONS
4.1 Outcomes
Throughout this project, we immersed ourselves in the minds of
bioinformaticians in a combination of in-person interviews and
online research. We gained significant domain knowledge, such as
how they wrangle data on a daily basis, and the challenges that
they face when doing so. We now have an understanding of how
genomic data is structured, and what gaps there are in the tooling
currently available to bioinformaticians working with this data.
This formed the basis for pgen-rs. Finally, we also learned how
to incorporate LLMs into our tooling in order to enhance the user
experience, and then how to combine this high-level interface with
the high-performance Rust code we wrote on the backend. This
gave us a nice balance of usability and efficiency.

We feel that our frontend came out well in integrating with the
LLM, and our backend indeed executes extremely efficiently over
very large datasets. We also feel that we were able to successfully
incorporate domain specific needs we gathered from bioinformatit-
icans in our limited interviews. However, we do feel that our UI
could be improved by eliminating the need for a separate terminal
to read results. We also struggled to recruit bioinformaticians to
interview, and would like to interview more experts in the future
to enhance our outcomes.

4.2 Future Work
Our next steps for this project are to meet with some bioinfor-
maticians again to see what they think of pgen-rs and have them
try out the tool in their daily work. As part of the participatory
design process, we would iterate on this design according to their
comments. One avenue for future work is to to provide support
for more complex predicates to match existing tools like bcftools,
and also eliminate the need for multiple UIs by rendering the query
results in our custom frontend, instead of terminal.

Furthermore, we hope to improve the executable DSL syntax
so it is easier for the LLM to write queries in it. One hypothesis
we have is that making the DSL’s syntax look more like Python or
Javascript may help it produce fewer syntax errors since it has seen
more examples of syntactically-correct Python code.

5 ARTIFACT
Please find the artifact at https://github.com/ilanashapiro/pgen-rs.

https://youtu.be/qDJxDcQ1CJA
https://github.com/ilanashapiro/pgen-rs

pgen-rs:Eff
icient

and
U
ser-friendly

G
enom

ic
D
ata

W
rangling

A
ided

by
LLM

s
C
onference

acronym
’X
X
,June

03–05,2018,W
oodstock,N

Y

Natural Language Query Answers Score

I want all the variants with a quality value of 100
QUAL == "100"
QUAL == "100"
QUAL == "100"

3/3

I want all the variants with a reference allele of C or A
REF=="C" || REF=="A"
REF == "C" || REF == "A"
REF == "C" || REF == "A"

3/3

I want all the variants with an alternative allele of T and a passing value for the filter
ALT=="T" && FILTER=="PASS"
‘ALT=="T" && FILTER=="PASS"‘
ALT == "T" && FILTER == "PASS"

2/3

I want all the samples with an IID of NA21106
IID == "NA21106"
“‘ \n IID == "NA21106" \n “‘
“‘ \n IID == "NA21106" \n “‘

1/3

I want all the variants with an allele count of 1852
INFO[AC] == "1852"
INFO[AC] == "1852"
INFO[AC] == "1852"

3/3

I want all the variants with a variant type representing a single nucleotide polymorphism
SVTYPE == "SNP"
VT=="SNP"
VT=="SNP"

0/3

I want all the variants with an EAS allele frequency of less than 0.1
EAS_AF <"0.1"
EAS_AF <"0.1"
EAS_AF<"0.1"

0/3

I want all the variants that have 2504 samples with data
NS == "2504"
NS == "2504"
NS == "2504"

0/3

I want all the variants with a total read depth less than 20070 and an allele count greater than 2000
INFO[DP] < "20070" && INFO[AC] > "2000"
“‘ \n INFO[DP] < "20070" && INFO[AC] > "2000" \n “‘
INFO[DP] < "20070" && INFO[AC] > "2000"

2/3

I want all the variants with an allele frequency less than 0.6 in the European population
INFO[EUR_AF] < "0.6"
EUR_AF < "0.6"
EUR_AF < "0.6"

1/3

Table 1: Table of results for natural language queries

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Kurashige, Ravi, Shapiro

REFERENCES
[1] [n. d.]. Bcftools. https://samtools.github.io/bcftools/. Accessed: 2024-06-05.
[2] Christopher C Chang, Carson C Chow, Laurent CAM Tellier, Shashaank Vattikuti, Shaun M Purcell, and James J Lee. 2015. Second-generation PLINK: rising to the challenge of

larger and richer datasets. Gigascience 4, 1 (2015), s13742–015.
[3] Petr Danecek, Adam Auton, Goncalo Abecasis, Cornelis A Albers, Eric Banks, Mark A DePristo, Robert E Handsaker, Gerton Lunter, Gabor T Marth, Stephen T Sherry, et al.

2011. The variant call format and VCFtools. Bioinformatics 27, 15 (2011), 2156–2158.
[4] Melissa Gymrek. [n. d.]. Personal Genomics for Bioinformaticians Chapter 7: GWAS for complex traits. https://gymrek-lab.github.io/personal-genomics-textbook/complextraits/

gwas.html. Accessed: 2024-06-05.
[5] Erwin L. van Dijk, Hélène Auger, Yan Jaszczyszyn, and Claude Thermes. 2014. Ten years of next-generation sequencing technology. Trends in Genetics 30, 9 (2014), 418–426.

https://doi.org/10.1016/j.tig.2014.07.001

https://samtools.github.io/bcftools/
https://gymrek-lab.github.io/personal-genomics-textbook/complextraits/gwas.html
https://gymrek-lab.github.io/personal-genomics-textbook/complextraits/gwas.html
https://doi.org/10.1016/j.tig.2014.07.001

	1 Introduction
	1.1 Background
	1.2 Additional Background: PLINK vs VCF for Data Wrangling

	2 Methodology
	2.1 Demo

	3 Results
	4 Reflections
	4.1 Outcomes
	4.2 Future Work

	5 Artifact
	References

